数学の未解決問題
数学の未解決問題について説明します。問題自体はシンプルでも、証明されていない問題がまだまだたくさんあります。
完全数は無数にあるか?
完全数とは、自分自身を除く正の約数の和が自分自身に等しい自然数です。 例えば、
- 6は約数は1,2,3となり、1+2+3=6なので完全数です。
- 28は約数は1,2,4,7,14となり、1+2+4+7+14=28なので完全数です。
現在51個しか発見されていませんが、無数にあると予想されていまが、 まだ、証明されていません。
ゴールドバッハの予想
ゴールドバッハの予想は、すべての2よりも大きな偶数は2つの素数の和として表すことができるという予想です。 (ここで素数とは、1と自分自身以外の約数を持たない自然数です。)
例えば、
- 4=2+2
- 6=3+3
- 8=3+5
- 10=3+7=5+5
問題自体は非常にシンプルですが、未だに証明されていません。
リーマン予想
リーマンゼータ関数の零点が、負の偶数と、実部が 1 / 2 の複素数に限られるという予想である。
リーマンゼータ関数は、$s$を複素数、$n$を自然数とするとき、
$$\zeta(s):=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}=1+{\frac {1}{2^{s}}}+{\frac {1}{3^{s}}}+{\frac {1}{4^{s}}}+\cdots$$で定義される関数$\zeta$のことをいう。